
Radare
Demystified

r2@33C3/2016

pancake@nopcode.org



Introduction.



Who am I?
Sergi Àlvarez // pancake // @trufae

● Working at NowSecure as a Mobile Security 

Analyst doing R+D.

● Author of radare(1+2), Acr, Valabind and 

many other open-source tools.

● Messing with Bluetooth, Coding asm video 

codec optimizations for x86, arm and mips, 

IoT firmware dev, SexyPanda @Defcon CTF, 

Forensics, Sysadmin, Web and C developer.



What’s Radare?
● Free and OpenSource RE Framework

● Focus on portable, extensible, expressive

● Hobby project started in 2006

● Full rewrite in 2009

● Few contributors until 2013

● Mainly developed by me

● Switching from developer to maintainer

● About 500 users in irc/telegram

● ~6200 followers on Twitter

● First r2con last September in BCN

● 3rd year organizing a Summer Of Code



Stands For ‘Raw Data Recovery’

● Hexadecimal Editor

● Assembler / Disassembler

● Support lot of file formats and archs

● Static / Dynamic Analysis

● Hash / Entropy / BinDiffing

● Debugger / Emulator

● ROP Finder / Payload Generator

● Scripting support for many languages

● Plugins / Package Manager

Very portable

● Linux/Android

● macOS/iOS

● Windows

● QNX

$ rasm2 -L

$ rabin2 -L

$ r2pm -s



What can I inspect?



Wait..

Don’t lose the rail



Myths.



Myths
● It’s not Stable

● It’s Difficult

● So Many Commands

● Hard to Remember

● It’s Buggy

● Can’t Decompile

● Broken Debugger

● It’s not Written in Python

● Can’t Assemble

● There’s no Graphs

● I Can’t Pay for it

● Bindings are Not Working

● Nobody Uses it

● Not Documented

● There is no GUI

● Doesn’t Support XXX arch

● It’s Slow

● API not stable



But First.. Let’s Make a Poll

● How many of you know radare?

● How many of you use r2?



It’s Difficult.





It’s Difficult

Learning curve is steep, but from 

my experience, people need from 2 

days to 1 week to get used to it.

(Comparable to Perl, Vim or Git).

● So many commands

● Hard to remember

In the other hand...

● Very Expressive and Flexible

● Easy to Modify and Extend

● Build Tools on Top of r2



So Many Commands
The amount of commands you have to remember is pretty little.

● Mnemonic Commands (short in length, each letter have a meaning)

● Unix-like shell (pipes, redirections, grep, less, json-indent, …)

● Orthogonal (mix commands and modifiers to express your wishes)



So Many Commands
Just remember 5 commands to do most of the tasks:

● s -  seek 

● pd/px ~ print disasm / hexdump

● wa/wx ~ write assembly / hexpairs

● v ~ enter visual mode

● q ~ quit

Command Modifiers: ., ?, @, ~, >, |, @@, ~!, “, \

Advanced Commands: i, af, agf, dr, S=



Hard To Remember
Commands follow simple mnemonic rules:

● Each char in the command is a subcommand of the previous one.

○ px -> print hexdump

○ pd -> print disasm

○ af -> analyze function

○ is -> info symbols

● Append ‘?’ to the command to get help about it

● Prefix with ‘.’ to interpret the output as commands

● Backticks are also supported x `?v 33`

● Temporary seek with @



Structured
● libr/ modules with internal dependencies

● p/ plugins for each module

● binr/ programs

● shlr/ 3rd party ripped code

● APIs in continuous evolution (refactoring)

● Bindings automatically generated

● Core/R2 provides all functionality of other parts





Useless For Forensics.



Forensics
Besides being the original aim of the tool, forensics is probably not one of 

their strong points.

The evolution of the project depends on user’s interest and contributors, in 

order to support more filesystems, better introspection on data structures, etc

But still, r2 have some really valuable features on this field...



Forensics
● Open disk devices on all platforms as well as memory dumps

● r2k allows to read/write physical memory (r2pm -i r2k-linux; r2k://)

● Find patterns and analyze the results (/x)

● Mount filesystems and understand partitions (m)

● Carve dumps to identify known file headers with pm and /m

● Show data in structures (parsing .h files or format oneliners)

● Compute incremental or per-block checksums

● Pluggable IO to work with local or remote resources (see r2 -L)

● Support gzip:// ewf:// and other common forensics file formats



Forensics
(demo)

Carve Dump to find magic headers and extract them

Mount Filesystem

Show data structures



Analysis Is Slow.



Analysis By Default
● Blocking Operation that takes too long

● Doesn’t work for big binaries

● Takes a lot of time

● Doesn’t find all the functions 

● The rule of ‘a’ after ‘a’

● Many analysis options and commands

● Choose carefully

http://radare.today/posts/analysis-by-default/





Faster Analysis
● Go straight to the problem

● 90% of the time you don’t need a complete analysis

● Find refs much faster than any other tool

● Improving on every release

● Avoid the use of generic/dumb analysis

● Know your tools and choose wisely

● Generic loop for all archs (pluggable)

● Multiple iterations with different algorithms



Analysis Demo
(demo)

Analyze Functions, Check Code Coverage

Find references of strings, Patch Call

Use ESIL to emulate code and find computed references



Undocumented.



Documentation
As long as the project scope is pretty huge, there are tons of hidden 

functionalities and original uses of every single command people feel lost and 

disoriented and start asking for documentation. But the truth is..

● It’s already documented in C

● Inline help in every command by just appending a question mark

● I wrote a book for r1, and Maijin updated it for r2

● Tons of talks, slides, blog posts, youtube tutorials, ..

http://rada.re/r/docs.html

http://rada.re/r/docs.html
http://rada.re/r/docs.html


Cannot Decompile.



Can’t Decompile
Decompilation is hard, so it’s delegated to 3rd party tools

● Use retdec (r2pm plugin and online service)

● Radeco (started in the GSoC, wip, still not usable)

● Boomerang was supported for r1.

● Snowman Decompiler (r2pm -i r2snow)



Better Disasm
But r2 have some good disassembler capabilities

● Colorized instructions by type

● Variables/Arguments analysis

● Immediate replacement (and relative substitutions)

● Pseudo-Disassembly (add eax, 3   ->   eax += 3)

● Summary (refs of strings and calls)

● AsmEmu (emulate code and add comments at right)

● Interactive Ascii-Art basic block and call control-flow Graphs



Better Disasm

(demo)



Not Stable.



It’s Not Stable
Stability depends on 

● The amount of crashes

● Commands and APIs changes.

So...

● We are now 1.x (announced in r2con)

● Most commands are not going to change

● JSON output eases parsing for automating with r2pipe

● The C API is quite stable, but there are continuous refactorings



Feature X is Broken

● Most common complains are already fixed in Git.

● Security bugs are fixed in less than 24h (usually 1-2h)

● Aim to follow the rule of “you see it you fix it”

● If not, write tests and fill issues in GitHub

● Very active project with lot of eventual contributors



Release Soon Release Often (every 6 weeks)



The Debian Case



Testsuite
● Follows the RDD pattern, late for TDD, continuous refactorings

● Runs on Linux and macOS in Travis and Jenkins (slow for AppVeyour)

● Fuzzing is part of the development process

● Using valgrind, asan, clang-analyzer, scan.coverity



Not Written in Python
C is not the perfect language, it’s easy to make mistakes, but Python is not the 

solution. Maybe Rust fits better with the philosophy of the project.

● 3 bindings for Python Swig, r2pipe, CTypes

● Support MIASM, IO, RBin and RAsm plugins

● Statically typed languages catch errors at compile time

● More tools available to profile, debug, optimize

● Faster, native and smaller footprint, transpiles to js!

● Enough for 90% of the problems faced in r2land



There is no GUI.



Terminals are scary
Writing UIs is boring and commandline tools are faster to develop and more 

flexible. But lazy minds usually like to wheel and click around instead of 

typing commands.

We care about users, but r2 is not a GUI, other projects fill the gap.

Only RE tool of choice for blind people (we have at least 2 users!), 

text-to-speech and braile device support works fine with r2.

● The problem is not the lack of GUI, but the amount of them.



Visual Mode (V)



Tiled Visual (V!)



WebUI (=H,/m)



WebUI (=H,/p)



BlessR2 (Node+Blessed)



Gradare (Gtk2+Vte)



Ragui (abandoned/unreleased)



Bokken (Py/Gtk2)



R2G4W (.NET/MFC)



R2GUI (QT5/C++) ( 3 days ago )



Iaito (Qt/C++) (alpha release on early 2017)



Iaito (Qt/C++)



Iaito (Qt/C++)



Scripting Is Complicated.



Scripting
Automate actions, create plugins, add new commands or extending 

functionality can be done in C or in any other programming language using:

● R2 commands, macros, modifiers, repeaters, …

● RLang internal evaluation of $lang expressions into r2 (libr/lang)

● Native Swig/Valabind Bindings (radare2-bindings)

● R2Pipe (string and json api for RCore.cmd())



r2pipe
APIs around r_core_cmd_str()

● open()

● cmd()

● cmdj()

● quit()

● Write Plugins for (io/asm/bin)

● JSON deserialization

● Sync / Async

● Support A LOT of languages

○ r2pm cd radare2-r2pipe

● Many connection methods

○ Native/RAP/HTTP/PIPE/..



List of Supported Languages
● C / C++

● Vala

● C# / F#

● Nim

● DLang

● Swift

● Java

● Go

● Haskell

● Python

● NodeJS

● Ruby

● Perl

● PHP

● Erlang

● OCaml

● Lisp / NewLisp

● Clojure



r2pipe

(demo)

Mirai Malware Config Decryption



Debugger Is Confusing.



Debugger Is Confusing

● Starts debugging at dyld (not the program entrypoint)

● Not aiming to replace a source debugger (but supports dwarf/pdb/..)

● Programs can have multiple slices or entrypoints (rabin2 -x)

● Changes in memory doesn’t apply to disk

● Rarun2 profiles needed sometimes



Debugger Basics
● Spawn or Attach

● Pluggable for local and remote

○ native/gdb/windbg/bochs/...

● Subcommands of ‘d’

● Telescoping

○ dr= / drr

○ pxr @ rsp

● Remoting via rap:// and =!=

● Inject code with dx

● Dump/Restore reg/mem states

● Memory

○ read/write/pages/perms

● Registers

○ families/get/set/flags

● Processes

○ children/tls

● Descriptors

○ sockets/files/windows

● Breakpoints

○ sw/hw/mmu



Debugger Backends.
As long as everything in r2land is 

pluggable, debuggers are also 

considered modular parts and there 

are many implementations for 

them, you can write your own!

In Core:

● Bochs

● WinDBG

● GDB

● QNX

● ESIL

Via r2pm:

● R2frida

● R2lldb



GDB://
Gdb client stub implemented from scratch, to be used with QEMU, VMWare, 

gdbserver, …

● GDB protocol is crap

● Mixes binary, plaintext and XML with ascii checksums \o/

● Each platform (arch/os pair) requires changes

● X86/X64 support is there

● WIP to properly support MIPS, ARM, ARM64 and AVR



R2LLDB

Available via r2pm, uses the LLDB python API to talk to r2 via r2pipe with 

RAP.

● Allows to use a running LLDB session from r2

● Works on all Apple things (watchOS, iOS, …) without jb

● Also works for XNU kernel debugging

Easily portable to GDB-Python (not yet done)



R2Frida
Use Frida as a backend for memory access  and in-process code injection.

There are other plugins like r2lldb, bochs, gdb.. that are also interesting..

● Attach to local or remote process

● Supports macOS, iOS, Linux, Android, QNX, Windows

● Javascript code injection and hooking

● Apis and commands to resolve classes, methods, etc



R2Frida

(demo)



WTH IS ESIL.



ESIL
● Stands for ‘Evaluable Strings Intermediate Language’

● Standard intermediate language in r2

● Reuses text-based register profiles from analysis or debugger

● Forth-like Language (2 stacks)

● Each instruction is translated to a single string

Mov Eax, 33          =>         33,eax,=

● Used for emulation, assisted debugging

● Search expressions, Predict jumps, Find references



ESIL
● ae subcommands used to manipulate the virtual machine of ESIL

○ aeim - initialize host stack

○ aer - registers

○ aesu - step until

● /E search offsets that match an ESIL expression

● e asm.emu / likely branches

● aae - emulate code to find computed references to strings

● Unicorn support available in r2pm, but not as complete as ESIL



ESIL

(demo)



Exploiting.



Exploiting
Provides all the tools needed for researching vulns and developing exploits.

● Hexadecimal Editor, Assembler, Disassembler

● Analyzer, Bindiffer, Search Code/String/Data

● Debugger, Emulator, Stack Analysis (pxr)

● Other Facilities for Exploiting

○ ROP Gadget Search / Classification (rarop WUI)

○ DeBruijn Patterns Generate / Find Offset (wop)

○ Register/Stack Telescoping (drr)

○ Heap Analysis (dmh)



DirtyCow
The exploit for CVE-2016-5195 can be easily integrated into r2 as an IO plugin.

This vulnerability can be used to modify the contents of system files without 

root privileges (Linux 2007 (>= 2.6.22) until 2016 (< 4.8.3)).

(demo)

https://dirtycow.ninja/

https://www.nowsecure.com/blog/2016/12/08/android-dirty-cow-patch/

https://dirtycow.ninja/
https://dirtycow.ninja/
https://www.nowsecure.com/blog/2016/12/08/android-dirty-cow-patch/
https://www.nowsecure.com/blog/2016/12/08/android-dirty-cow-patch/


Questions.




